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We investigate stationary bound states of bright solitary waves in an optical fiber with fourth-
order dispersion, which is described by a generalized nonlinear Schrédinger equation with an addi-
tional fourth-order derivative term. It is shown that various families of two-soliton (and multisoliton)
bound states exist for this equation in the parameter region where single solitons have radiationless
oscillatory tails. We analyze and discuss their stability and possible applications. A stability cri-
terion for stationary two-soliton (and multisoliton) states of a conservative Hamiltonian dynamical

system is derived.

PACS number(s): 42.81.Dp, 42.50.Rh, 02.30.Jr

I. INTRODUCTION

A crucial issue in time-division multiplexed optical
transmissions is to maintain a constant temporal sepa-
ration between the individual pulses that carry informa-
tion. In soliton-based high bit rate transmission systems,
the relative position of the individual pulses in a sequence
can be scrambled by the Gordon-Haus effect [1] and/or by
soliton interactions [2]. Forcing each soliton to remain in
its own time slot may be achieved by distributing band-
pass filters [3—-5] or synchronous amplitude modulators
[6] along the line. In all of these methods, even though
soliton interaction is suppressed, it is not reduced to zero.

Here we are interested in developing a different strat-
egy to prevent pulse coalescence. One of the ways to solve
this problem is to use solitons with oscillating tails [7].
In this case the interaction between the solitons them-
selves can establish a certain minimal distance between
the pulses and hence solitons can be separated from each
other by some potential barrier. On the other hand,
bound states of these solitons can exist. The question of
the interaction of two (or more) solitary waves and the
condition for the existence of soliton bound states in vari-
ous dynamical systems has been formulated in [8-10] and
is still a topic of active discussion (e.g., [11,12]). Bound
states (BS’s) of solitons exist when single-soliton solu-
tions have nonmonotonic asymptotics (radiationless os-
cillating tails) [10]. These tails produce local extrema
in an effective interaction potential of weakly overlap-
ping solitons and therefore these solitons can trap each
other at certain distances. Thus the single solitons can
be bound into multisoliton states which, in principle, can
serve as information flow in optical transmission lines.
To transmit information, the train of solitons should
be modulated by changing the relative phases between
neighboring solitons in the train. However, the stability
of the whole train, and specifically the stability of two-
soliton BS’s, is a question to be addressed before con-
sidering the practical use of this idea. In this paper, we
investigate, analytically and numerically, stationary two-
soliton (and multisoliton) BS’s of bright solitons of the
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generalized nonlinear Schrédinger equation (NLSE) with
an additional fourth-order derivative term and analyze
their stability.

The remainder of the paper is organized as follows.
In Sec. II we formulate the problem and (for complete-
ness of this paper) remind the reader of the main results
of [7,13]. In Sec. III we analytically determine station-
ary soliton BS’s of the generalized NLSE. In Sec. IV
we consider their stability and derive a stability criterion
for stationary two-soliton (and multisoliton) BS’s of any
conservative Hamiltonian dynamical system. In Sec. V
we present the results of our numerical analysis and com-
pare them with the results of Secs. III and IV. Section
VI contains our conclusions and a discussion.

II. STATEMENT OF THE PROBLEM

We start with the generalized NLSE with an additional
fourth-order derivative term. In optics, this equation de-
scribes pulse propagation in fibers with fourth-order dis-
persion [7,13,14]. It can be obtained under the usual

assumption of a slowly varying field envelope. In the
dimensionless form it is given by
Ow 0w f'w 2
z—a?+ﬁ—sw+|wlw=0. (1)

Here w(,7) is the slowly varying pulse envelope, £ is
the normalized longitudinal coordinate, 7 is the normal-
ized retarded time, and € is proportional to the ratio of
fourth-order and second-order group velocity dispersions.
In this paper we investigate only the case € > 0, since in
the case € < 0 stationary single-soliton solutions do not
exist (any single pulselike solution emits radiation [15]).
Equation (1) describes the pulse propagation in a spe-
cially designed optical fiber. The group velocity versus
wavelength dependence for such fibers has a maximum at
the pulse central frequency. The way to design this type
of fiber is discussed in [16] in detail. It is important to
note that the value of the second-order dispersion can be
very close to zero at the central frequency and thus it can
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be of the same order as the fourth-order dispersion [i.e.,
€ ~ 1 in Eq. (1)]. In this case the pulse duration can be
chosen around T' = 1 ps to ensure that even moderate
pulse powers (P =~ 1 W) make the effects which we are
discussing in this paper observable. Other terms which
should be added to Eq. (1) when one investigates the
propagation of the pulses with T' < 0.1 ps (see [17]) are
caused by different physical reasons and can be omitted
in this work. Equation (1) is also related to other fields
of physics (e.g., it describes propagation of “whistlers” in
a plasma [18]).

We note that it is possible to reduce the number of
parameters of Eq. (1) by using rescaling transformation:
t=r1/ye, = =E¢e, and u = wy/e. These transforma-
tions turn Eq. (1) into

Ou & 8%u

—_— _— 2 =
28.@ + 512 5 + |ul®u = 0. (2)

Below we analyze Eq. (2), noting that one can easily
get all solutions of Eq. (1) from the solutions of Eq. (2)
using the inverse scaling transformations.

Equation (2) has three integrals of motion: the energy
of the pulse

Q= [ uta (3)
the momentum
M=i (ugu® — ugu)dt, (4)

and the Hamiltonian
H= / (uel? + e — Luf)dt. 5)

In this paper we are interested in solutions of Eq. (2)
with M = 0. Hence only two of the conserved quantities
(energy and Hamiltonian) are of importance. Equation
(2) can be written in the canonical Hamiltionian form
[19]

§H ., 6H
mu, = —

ium = (Su*, 2 — 6_’[1,, (6)
where § denotes variational derivative.

Equations (5) and (6) define a Hamiltonian dynamical
system on an infinite-dimensional phase space of complex
functions (u,u*), which decrease to zero at infinity and
can be analyzed using the theory of Hamiltonian systems.

Stationary pulselike solutions of Eq. (2) have the fol-
lowing form:

u(z,t) = y(g,t — to)e* (0= +¥0), (7)

where tg and ¢g are the position of the soliton center and
the initial phase of the soliton, respectively, ¢ (¢ > 0) is
the parameter of this one-soliton solution (nonlinearly
induced shift to the wave number), and y(gq,t — ¢o) is a
real function of its parameters.

The equation for finding stationary solutions in a vari-
ational formulation can be written in the form

5(H — qQ) = 0. (8)

A variational formulation of the problem (8) also defines
the stability of stationary states [20]. For any fixed Q
the stationary state is stable if the corresponding H has
a local minimum, with ¢ being the Lagrangian multiplier.
The ordinary differential equation for finding stationary
solutions obtained from Eq. (8) is

d*y d%y 3
s 24 — =0. 9
2 ga TV T 9)
For a particular case ¢ = 0.16 an exact solution of Eq.
(9) has been found recently [13]:

3
+ 10

V) = T~ t0)/ V30 (10)

For other values of ¢ the exact analytical form of solutions
is unknown. Below in our analysis of soliton interactions
we use an approximation which has been found using a
variational approach [13]:
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FIG. 1. Examples of single-soliton stationary solutions of
Eq. (2). (a) Soliton without oscillating tails (¢ = 0.16, point
A in Figs. 2 and 3). (b) Soliton with oscillating tails (¢ = 5.0,
point B in Figs. 2 and 3).
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a(Q) ei(qz—{—‘pg)’ (11)

u@t) = e [k(a)(¢ — to)]

where a(q) and k(q) are given by

K = | e

=16+ /36 + 400’ 2
12

a() = 1/ 5 K(0) + 5 K (@)

Expressions (11) and (12) are a reasonable approxima-
tion of an actual one-soliton solution of Eq. (2) in its
central part [i.e., for k(q)(t — to) ~ 1]. However, those
expressions (11) and (12) do not have correct asymp-
totic behavior. Asymptotics becomes qualitatively wrong
when ¢ > 0.25. For this region of ¢ the asymptotics can
be obtained from analysis of the linearized Eq. (2):

lim y(t,q) = 4a(g)e D1l cos [w(g)lt — to] + Yo(q)],

(13)
where A(q) and w(q) are given by
AMg) = q1/4 cos arctan/4q — 1
2 b
(14)

t -
w(q) = /% sin (arc an 2\/4q 1)’

and ¥o(q) =~ m/2. We recall that we use the approximate
solution (11) and (12) only to describe single solitons in
their central part, always taking into account the correct
asymptotic form of tails (13) and (14).

Characteristic examples of single-soliton solutions of
Eq. (2) without and with oscillating tails are given in
Figs. 1(a) and 1(b) correspondingly. These solutions form
one-parameter family with ¢ as a parameter. Because ra-
diationless oscillating tails of single-soliton solutions exist
at ¢ > 0.25, BS’s of these solitons, i.e., stationary multi-
soliton solutions, exist only in the same region of q.

III. BOUND STATES OF SOLITONS

The Hamiltonian of any two interacting solitons which
are located far enough from each other can be written in
the approximate form

H = H, + Hs + Hiy, (15)

where H; and H, are Hamiltonians of the individual soli-
tons and Hjy, is a small interaction term, which is deter-
mined by the nonlinear part of Hamiltonian (5) (see [10])

o 4
Hyp, = —/ |~u(t’2—w)|dt. (16)

Now substituting v = u; + uz, where u; and uy stand for
unperturbed individual solitons, in Hyr and linearizing

relative to uz (and u;) we obtain

oo

Hin(8t,8¢) = =2 [ fun (t,2) PRefus (1, 2)u3 (¢, )}

~-00

+(1 « 2), (17)

where the expression describing the interaction of the
central part of the first soliton with the tail of the second
one is written down explicitly. Because of the symmetry,
the similar expression (1 <> 2) has to be added for the
interaction of the central part of the second soliton with
the tail of the first one. The interaction part Hin, (17)
depends on the relative distance At between the centers
of the two solitons and their relative phase difference A¢p.

Now, assuming that the two interacting solitons are
identical and far separated and inserting Egs. (11) and
(12) (with to = 0 and @o = 0) for the central part of u;
and Eqgs. (13) and (14) (with to = At and pg = Ayp) for
the tail of uy in the first term on the right-hand side of
the expression (17) [and making the similar substitutions
for the remaining term (1 > 2)] one can finally get

Hint(Ata A‘P) =—-A COS(A(p)e"A(‘I)At
x cos[w(q)At + ¥1(g)], (18)

where A ~ a*/) and v¥:1(q) = v¥o(q). Note that we have
taken into account the correct asymptotic dependence of
soliton tails (13) and (14) in calculating the expression
(18).

In this paper we consider mainly interactions and BS’s
of two solitons. However, this approach can be extended
for any number of solitons since, due to the exponential
factor e MDAt in H; . only pair interactions between
neighboring solitons are important.

BS’s of two solitons exist if the interaction part of
Hamiltonian (18) has local extrema. These extrema are
determined by

0H, int
OAp

aHint
=0 = 0.
" AAL 0 (19)

For every q¢ > 0.25 there are two infinite sets of so-
lutions of Egs. (19) (i.e., there are two sets of families
of BS’s): the “symmetric” set (two solitons in phase)
and the “antisymmetric” set (7w-phase difference between
solitons):

Ap =0,m,
(20)
™
Atn == Atl + —(n - 1),
w
where n = 1,2,3,... and At; = [r — ¥1(q) +

arccos(A/vA? + w?)]/w. For the symmetric set, At,, with
odd (even) numbers correspond to local maxima (min-
ima) of Hi,t. For the antisymmetric set of BS’s the situa-
tion is opposite. Below, we call the stationary two-soliton
BS for which the relative distance between partial soli-
tons is At, a “BS of nth order.” We remind the reader
that the BS’s constructed above from single-soliton solu-
tions have the same value of ¢ as the individual solitons.
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IV. STABILITY ANALYSIS

For the case of two identical, well-separated solitons,
local extrema in Hj,: (18) result in extrema in the total
Hamiltonian (15) at the same values of At,, and Ay for
a fixed value of ¢. This, in turn, results in local extrema
of the Hamiltonian (15) for a fixed Q. If the Hamiltonian
has a local maximum, the corresponding BS is unstable
with respect to a relative transverse shift of two soli-
tons. If the Hamiltonian has a local minimum, then the
corresponding BS is stable relative to this type of per-
turbation. However, the whole analysis was carried out
for two identical solitons. Thus, even if the interaction
part of Hamiltonian has a local minimum, other types
of perturbations [including those which change the first
two terms of the Hamiltonian (15)] must be considered
before making a final conclusion about general stability.

Suppose that the Hamiltonian and energy for a family
of single-soliton solutions are related by

H = f(Q), (21)

where f(Q) is some functional dependence, which can be
found using approximate analytical methods or numer-
ically. The Hamiltonian for the combined state of two
identical solitons is given by

H =2f(Q) + Hint(Q)- (22)

Now we consider perturbations that exchange energy
between two solitons. Due to this perturbation, the en-
ergy Qo of one soliton is increased by the small amount

AQ:
Q1= Qo +AQ. (23)

Since we are interested in perturbations that conserve
total energy, the energy of the second soliton has to de-
crease by the same amount:

Q2 = Qo — AQ, (24)

so that the change of the Hamiltonian is approximately
given by

AH = f"(Qo)(AQ)?, (25)
where f"(Q) = g—gé. The value of Hin(Q) also de-

pends on @, but this dependence is relatively weak [since
H;t(Q) is exponentially small itself]. Without loss of
generality, we can consider it as a constant in the vicin-
ity of any particular @ = Qo. Hence the sign of f"(Q)
at the point (Q = Qo) defines the stability of BS’s. If
f"(Q) is negative, the Hamiltonian, which corresponds
to the analyzed BS, does not have a local minimum for
fixed Q = Qo so that this BS is unstable. For the family
of one-soliton solutions of Eq. (2) f”(Q) is negative for
all possible values of @ (numerical result) and thus we
can expect that two-soliton BS’s are unstable.

The stability criterion derived above for our particular
problem can be generalized: for any conservative nonin-
tegrable systems having a family of single solitons with
radiationless oscillating tails, the Hamiltonian versus en-
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FIG. 2. Energy-dispersion diagram for the various families
of soliton states. Each curve corresponds to a family of soli-
ton solutions. Examples of soliton solutions corresponding to
filled circles (A — H) are shown in Figs. 1, 4, and 5. Open cir-
cles denote the starting points of the families of two-soliton
(or multisoliton) BS’s. Only curves corresponding to two-,
three-, and four-soliton states are shown.

ergy curve for this family defines the stability of two-
soliton BS’s. The BS is stable if the second derivative of
f(Q) at the point of interest is positive and is unstable
if the second derivative is negative.

All above derivations have been made in the approx-
imation that the solitons are separated far enough from
each other. When the solitons are close to each other
(which is the most interesting case, because of large val-
ues of bound energy Hipt), then formally we cannot ap-
ply our approach and need to use numerical methods.
In the next section we compare our analytic results with
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FIG. 3. Hamiltonian versus energy diagram for the various
families of soliton states. The labels of points are the same
as in Fig. 2. The sequence of points F, E, and C shows the
correspondence between the variables H, Q, and gq.
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results of numerical simulations and discuss the BS sta-
bility question in detail.

V. NUMERICAL RESULTS

The results of Sec. III show that, in order to find sta-
tionary soliton solutions of Eq. (2), one should find local-
ized solutions of Eq. (9). Equation (9) is a fourth-order
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FIG. 4. Examples of symmetric two-soliton BS’s: (a) sym-
metric BS of the first order (At = Aty, ¢ = 5.0, point C
in Figs. 2 and 3, & = 0.750); (b) symmetric BS of the sec-
ond-order (At = Ata, ¢ = 5.0, point D in Figs. 2, and 3,
K ~ 0.055); (c) symmetric BS of the third order (At = Ats,
g = 5.0, point E in Figs. 2 and 3, k =~ 0.015). Points D and
E coincide on the scale of Figs. 2 and 3, but they belong to
different curves.
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nonlinear ordinary differential equation (ODE) with real
parameters and it can be analyzed by means of the stan-
dard shooting technique (see [7] and [21]). The work
[21] contains the general theorem showing the existence
of multihump localized solutions in autonomous Hamil-
tonian systems of fourth-order (the ODE problem). The
main results of our numerical analysis are presented in
the form of an energy-dispersion diagram (see Fig. 2)
and Hamiltonian versus energy diagram (see Fig. 3). In
these diagrams Q and H are defined by the expressions

| (@

L
o |
\

L
o |
o

~ O -

4]

2]

1S S * A ——

FIG. 5. Examples of antisymmetric two-soliton BS’s: (a)
antisymmetric BS of the first order (At = Aty, ¢ = 5.0, point
F in Figs. 2 and 3, £ =~ 0.603); (b) antisymmetric BS of
the second-order (At = At,, ¢ = 5.0, point G in Figs. 2
and 3, Kk =~ 0.109); (c) antisymmetric BS of the third order
(At = Ats, ¢ = 5.0, point H in Figs. 2 and 3, k &~ 0.010).
Points G and H coincide in the scale of Figs. 2 and 3, but
they belong to different curves.
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(3) and (5), respectively.

Each curve in Figs. 2 and 3 corresponds to a family of
soliton solutions of Eq. (2). The family of single-soliton
solutions exists for every ¢ > 0. In the interval 0 <
g < 0.25, one-soliton solutions do not have oscillating
tails. On the other hand, for ¢ > 0.25, asymptotics of
one-soliton solutions are nonmonotonic (oscillating tails).
(Two characteristic examples of one-soliton solutions are
shown in Fig. 1.) In the range ¢ > 0.25 we also have
found many families of two-soliton (or multisoliton) BS’s.
Among two-soliton BS families, there are both symmetric
and antisymmetric ones. In Figs. 2 and 3 only curves
corresponding to families of two-, three-, and four-soliton
BS’s are shown, but multisoliton BS’s with any number
N of partial solitons exist as well. For every number N,
there are infinitely many families of BS’s, but some of the
corresponding curves are located very close to each other
and thus cannot be distinguished on the scale of Figs. 2
and 3. Characteristic examples of symmetric two-soliton
BS’s are shown in Fig. 4 and characteristic examples of
antisymmetric two-soliton BS’s are shown in Fig. 5.

We have also studied the stability of two-soliton BS’s
using direct numerical simulations. We used a split-
step beam propagation method [22]. In addition to the
straightforward propagation of various stationary BS’s,
we also studied the evolution of perturbation eigenmodes.
To do this, we have linearized Eq. (2) around the BS of
interest and we have solved the linearized equation to
find exponentially growing modes (for details of this tech-
nique see, for example, [23]). First of all, we have found
that single-soliton solutions are stable for all values of the
parameter ¢ (g > 0). In other words, all single solitons
(with and without oscillating tails) are stable. However,
all stationary two-soliton BS’s are unstable in accordance
with the above analysis. For all two-soliton BS’s a mode,
growing as A ~ e*® (k > 0), always exists. The values
of x for the fastest exponentially growing mode of par-
ticular BS are given in the figure captions of Figs. 4 and
5. (All multisoliton BS’s are also unstable as a direct
consequence of instability of two-soliton BS’s.)

BS’s that correspond to local maxima of Hj,; are un-
stable with respect to perturbations that change the rela-
tive distances between the centers of the partial solitons.

FIG. 6. Evolution of the slightly perturbed two-soliton an-
tisymmetric BS of the first order [At = Aty, ¢ = 5.0, point F
in Figs. 2 and 3, the solution in Fig. 5(a)].

BS’s that correspond to local minima of H;, are also
unstable. The exponentially growing perturbation cor-
responding to this instability keeps the relative distance
between the two interacting solitons intact. Instead, it
leads to an increase in the amplitude of one soliton and
to a decrease in the amplitude of the other one.

A typical example of the latter behavior is shown in
Fig. 6. The initial condition for this simulation is chosen
in the form of an antisymmetric two-soliton BS corre-
sponding to point F' of Fig. 1 (and to a local minimum
of H,). First, this BS, which is slightly perturbed by
an asymmetric perturbation, propagates some distance
without noticeable change of its form. Then a pertur-
bation starts to grow quickly. It does not change the
relative distance between the two partial solitons, but it
changes the difference between their amplitudes. When
this BS evolves far from the initial stationary form, it
decays into two single solitons with very different am-
plitudes which move away from each other. The simi-
lar behavior has been observed for the evolution of other
slightly perturbed BS’s which correspond to local minima
of H;,;. However, we should note that the exponential
increment k of a growing perturbation is very small for
BS’s of sufficiently high order (n > 3). The bound energy
of these BS’s is also exponentially small (~ e~ *@)Atn),

VI. CONCLUSION

In conclusion, we have investigated, both analytically
and numerically, stationary BS’s of solitons in optical
fibers with fourth-order dispersion. We have shown that
two-soliton (and multisoliton) BS’s can exist in the re-
gion of parameters where single solitons have oscillat-
ing tails. We have also shown that all these two-soliton
(and multisoliton) BS’s are unstable. A stability crite-
rion for two-soliton BS’s, in terms of Hamiltonian versus
energy dependence for a family of single soliton solutions,
is proposed. This criterion can be used for any dynami-
cal equation which can be described by a conservative
Hamiltonian and has a family of one-soliton solutions
with oscillating tails.

In spite of the instability of soliton BS’s, the idea of us-
ing solitons with oscillating tails in telecommunications
remains valid since we have shown that oscillatory tails
establish a potential barrier in the interaction between
two neighboring solitons. This potential barrier exists
for equal as well as unequal solitons, provided both soli-
tons have oscillatory tails. Thus solitons cannot approach
each other closer than a certain minimal distance and
time slots for solitons in communication lines can still be
arranged. Investigations of dynamical behavior and in-
teractions of oscillating tail solitons are currently being
carried out.
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